КОНТРОЛЬ СВОЙСТВ ЧУГУНА УЛЬТРАЗВУКОВЫМ ТОЛЩИНОМЕРОМ UT-4DL

ЛУКИН Виктор Анатольевич – технический директор ООО «УЛЬТРАТЕХ», Москва

Введение

Согласно данным издания Modern Casting (№ 12, 2015) из года в год наблюдается устойчивый рост мирового выпуска отливок. Так, в 2014 году было выпущено более 103,6 млн. т, причем, доля отливок из серого чугуна (СЧ) составляла 47,46 млн. т, из высокопрочного чугуна (ВЧ) – 25,03 млн. т, стали - 11,05 млн. т. Надо отметить, что объем отливок из СЧ более чем в 4 раза, а ВЧ почти в 2,5 раза превосходит объем стального литья, что в совокупности составляет 75% всего объема выпуска отливок. В технологически развитых странах наблюдается четко выраженная тенденция сокращения выпуска отливок из стали при ежегодно увеличивающемся на 2-3% выпуске отливок из чугуна.

В связи с увеличением объемов производства и применения чугуна в промышленности, появления новых перспективных видов, например, чугунов с вермикулярной формой графита (ЧВГ), занимающих промежуточное положение по прочности между СЧ и ВЧ, в настоящее время задача развития и совершенствования методов контроля изделий из различных видов чугуна является высокоприоритетной и перспективной.

Постановка задачи

В качестве методов контроля могут быть использованы стандартные лабораторные методы контроля структуры образцов из чугуна посредством металлографических исследований, косвенные методы проверки на прочность образцов механическим разрушением и их разновидности. Указанные методы требуют изготовления специальных образцов из отливок или объектов контроля (ОК), изготовленных из чугуна [1].

К методам неразрушающего контроля (НК) относится активные ультразвуковые (УЗ) методы, дающие самые быстрые и точные результаты без разрушения объекта контроля (ОК) или отливки из чугуна, через оценку скорости распространения или затухания продольных ультразвуковых колебаний (УЗК) в материале [5, с.599; 3, с.434].

Применяемые активные УЗ методы делятся на две группы, использующие сквозное прохождение УЗК (амплитудный теневой метод) и отражение УЗК (эхо-импульсный метод) [3, с.94]. Из-за использования технических средств УЗ НК старых модификаций или с ограниченными техническими характеристиками донный сигнал на изделиях, изготовленных из чугуна, при использовании эхо-импульсного метода получить не удается, поэтому УЗ контроль проводится этими средствами теневым методом, что требует наличия двух специально подготовленных поверхностей ввода и донной, параллельных друг другу для сквозного прозвучивания двумя идентичными преобразователями. Теневой метод имеет свои преимущества в лабораторных условиях, но перспектив практического применения на производстве по сравнению с эхо-импульсным у него нет.

Таким образом, главной задачей испытаний является практическое подтверждение возможности использования ультразвукового толщиномера UT-4DL:

- при УЗ НК изделий и ОК из различных видов чугуна эхо-импульсным методом при одностороннем доступе к стенке ОК (подбор типов РС ПЭП, настроек прибора при измерениях);

- при определении физико-механических свойств чугуна в отливках для их идентификации из-за нестандартной формы графита и разбраковки посредством измерения скорости продольных УЗК в них;

- при измерении толщины изделий и ОК из различных видов чугуна (определение диапазона измеряемых толщин и погрешности измерений).

Теория

Виды литейного чугуна: СЧ, ЧВГ, ВЧ имеют большие различия по химическому составу, условиям литья, что обуславливает значительные различия структуры отливок. Особый вид чугуна – отбеленный чугун, где углерод входит в химическое соединение с железом (цементит), в данном исследовании не рассматривается. Химический состав и структура чугуна определяет его физикомеханические свойства: прочность (предел прочности при растяжении б_В), твердость (обычно HB), модуль упругости Е [3 с.435]. По прочности наименее прочным является СЧ, наиболее прочным соответственно ВЧ, промежуточное положение занимает ЧВГ. В СЧ, ЧВГ, ВЧ углерод содержится в виде графита различной формы.

На рисунке 1 представлены структуры различных видов чугуна, формы графитных включений [2, с.207]. В СЧ видны включения графита пластинчатой формы, в ВЧ шаровидной, в ЧВГ вермикулярной. Форма графита, содержащегося в чугуне, и структура металлической основы оказывает непосредственное влияние на физико-механические свойства отливок. С другой стороны, форма графита в чугуне, крупность графитовых включений (от 1 до 8 баллов) и их количество определяют скорость продольных УЗК, т. е. зная скорость, можно получить информацию о форме графитных включений.

Рисунок 1 Форма графитных включений в отливках чугуна

Исследованиями установлено, что в чугуне с выпавшим графитом скорость УЗК увеличивается и приближается к соответствующему показателю скорости УЗК в стали при [3, с.434; 5 с. 599]:

- уменьшении размеров графитовых включений;

- трансформации формы графитовых включений от пластинчатой через вермикулярную и хлопьевидную к шаровидной;

- уменьшении в процентном отношении количества включений пластинчатых графитовых выделений в отливке с шаровидным графитом;

- уменьшении в процентном отношении к железу содержания графита (уменьшение степени эвтектичности);

- увеличении в процентном отношении к ферриту содержания перлита (или цементита) в металлической матрице.

Большим количеством исследований установлено существование устойчивых корреляционных взаимосвязей между акустическими свойствами, в частности скоростью продольных УЗК в отливке чугуна, и формой, крупностью, количеством графитовых включений в ней, а соответственно, и с физико-механическими свойствами материала отливки [3, c.435; 5, c.599].

Иными словами, по результатам измерения скорости продольных УЗК можно контролировать не только структурные характеристики отливки, например, по величине скорости сделать вывод о процентном содержании шаровидного графита в контролируемой отливке, или, например, в двух отливках, идентичных по процентному содержанию графита (одинаковая степень эвтектичности), по различию в скорости продольных УЗК определить какая отливка содержит графит пластинчатой формы, а какая шаровидной. Но, что важнее, это возможность по результатам измерения скорости продольных УЗК контролировать физико-механические свойства материала отливки, оценивать такие важные характеристики, как: б_в, HB, E [3, с.435; 5, с.600-603].

Важно также отметить, что значение скорости УЗК зависит, во-первых, от композиции сплава чугуна, его однородности, процентного соотношения форм графита и других технологических переменных, во-вторых, зернистости чугуна, в-третьих, толщины стенки ОК.

Неоднородность (присутствие различных форм) и неравномерность распределения графитовых включений по объему приводит к значительной флуктуации скорости распространения продольных УЗК по различным акустическим трактам или направлениям прозвучивания ОК.

Зернистость чугуна, представляющего конгломерат крупных зерен феррита, перлита и графита (рисунок 1) совершенно различных по своим упругим свойствам, объясняет его ярко выраженную упругую анизотропию [5, с.129] и также приводит к погрешности измерения скорости УЗК из-за трансформации типов УЗ волн в зернах, «заваливания» фронтов и изменения формы измерительных эхоимпульсов, повышенного уровня структурных помех [5, с.544], значительного затухания и рассеяния.

Скорость продольных УЗК в отливках из СЧ линейно зависит от толщины стенки изделия. В дополнение на этой зависимости сказывается еще степень эвтектичности. Этот факт затрудняет представляющие интерес измерения толщины стенки в механически недоступных местах, например, корпусах ДВС [5, с.602].

На основании проведенного анализа, в качестве дополнительной задачи для проводимых исследований выбрана задача разработки рекомендаций, позволяющих на практике избежать значительного влияния указанных факторов на точность измерения скорости УЗК.

Проведение исследований

Для проведения исследований была выбран чугун СЧ15 ГОСТ 1412-85 в связи с тем, что отливки из СЧ обладают предельными значениями характеристик для чугунов, затрудняющими проведение УЗ контроля особенно эхо-импульсным методом. Получение положительных результатов исследований на образцах из СЧ позволит однозначно утверждать о возможности выполнения УЗ контроля эхо-импульсным методом на других видах чугуна, у которых характеристики приближаются к показателям стали.

1 Физико-механические характеристики отливки из чугуна СЧ15 ГОСТ 1412-85 представлены в таблице 1.

Марка чугуна	Предел прочности б _в , МПа	Твердость НВ (стенка 30 мм)	Плотность р, кг/м ³	Модуль упругости Ex10 ⁻² , МПа	К-т линейного расширения α, 1/°С
СЧ15	150	200	7,0x10 ³	700-1100	9,0x10 ⁻⁶

Таблица 1 - Физико-механические характеристики отливки из чугуна СЧ15 ГОСТ 1412-85

2 Химический состав отливки из чугуна СЧ15 ГОСТ 1412-85 представлен в таблице 2.

Таблица 2 -Химический состав отливки из чугуна СЧ15 ГОСТ 1412-85

Марка чугуна	Осно	овные компоненть	ы в %	Примеси в %, не более	
	С	Si	Mn	Р	S
СЧ15	3,15	1,8	0,8	0,3	0,026

Степень эвтектичности чугуна отливки (насыщение чугуна углеродом) определяется по формуле из [5, с.600] с использованием данные из таблицы 2:

 $S_C = [C] / (4,23 + 0,312 \cdot [Si] + 0,275 \cdot [P]) = 3,15 / (4,23 + 0,312 \cdot 1,8 + 0,275 \cdot 0,3) = 0,65.$

3 Исследование образца из отливки при помощи разрушающих и металлографических методов контроля.

3.1 Определена структура, размер зерна образца из отливки толщиной 5 мм. Изображение образца с зернистой структурой на сломе приведены на рисунке 2. Микроструктура чугуна отливки с пластинчатым графитом показана на рисунке 3.

Рисунок 2 Изображение образца с зернистой структурой на сломе (размер зерна 6-7 по шкале ASTM)

Рисунок 3 Микроструктура чугуна отливки с пластинчатым графитом (увеличение x135)

4 Объект исследования, использовавшийся при выполнении исследований.

4.1 Из одной отливки чугуна СЧ15 ГОСТ 1412-85 (длина отливки 450 мм) изготовлен комплект стандартных ультразвуковых образцов (СОУЗ) в количестве 7 штук для использования в качестве объекта исследования. Все образцы цилиндрической формы. Диаметр каждого образца 36 мм, высота от 10 до 150 мм. Шероховатость поверхностей ввода и донной R_Z, не более 6,3 мкм. Внешний вид образцов приведен на рисунке 4.

Рисунок 4 Внешний вид образцов комплекта СОУЗ, используемых для исследований

4.2 Перечень образцов комплекта	СОУЗ и их параметры представлены и	з таблице 3.
---------------------------------	------------------------------------	--------------

Наименование образца комплекта СОУЗ	Номинальное значение толщины образца, Н _X , мм	Геометрический размер в направлении прозвучивания, H _i , мм	Материал образца
№ 02-18 CЧ15 H10	10,0	10,00	СЧ15 ГОСТ 1412-85
№ 02-18 CЧ15 H20	20,0	20,01	СЧ15 ГОСТ 1412-85
№ 02-18 CЧ15 H40	40,0	40,01	СЧ15 ГОСТ 1412-85
№ 02-18 СЧ15 Н60	60,0	60,01	СЧ15 ГОСТ 1412-85
№ 02-18 CЧ15 H80	80,0	80,01	СЧ15 ГОСТ 1412-85
№ 02-18 СЧ15 Н100	100,0	100,01	СЧ15 ГОСТ 1412-85
№ 02-18 СЧ15 Н150	150,0	150,01	СЧ15 ГОСТ 1412-85

5 Средства УЗ контроля, использовавшиеся при выполнении исследований.

5.1 Ультразвуковой толщиномер UT-4DL производства компании ООО «УЛЬТРАТЕХ» <u>http://www.ultratech.su/pribor.html</u>. Заводской номер № 17002607.

5.2 Ультразвуковой преобразователь П112-2,5-12/2-Б модели 2,5Б12/2 производства компании ООО «ИСКАТЕЛЬ» <u>http://www.ultratech.su/datchiki.html</u>. Серийный номер № 3552012.

5.3 Контактная смазка: гель для УЗК МИАСС <u>http://www.ultratech.su/oil.html</u> и вазелиновое масло.

6 Подготовка УЗ средств контроля, выполнение настроек, калибровок.

6.1 На рисунке 5 и 6 показаны средства УЗ контроля и комплект СОУЗ в процессе проведения измерений скорости УЗК и толщины СОУЗ.

Рисунок 5 Средства УЗ контроля и комплект СОУЗ в процессе проведения измерений скорости

Рисунок 6 Средства УЗ контроля и комплект СОУЗ в процессе проведения измерений толщины

6.2 Перед проведением исследований была выполнены: корректировка параметров настроек и установок, затем калибровки и верификация ультразвукового толщиномера UT-4DL. Действия выполнялись в строгом соответствии со следующими документами:

- «Толщиномер ультразвуковой UT-4DL. Краткое руководство по началу работы» АИКА.412231.002РЭ <u>http://www.ultratech.su/assets/quick-start-guide_2.4.pdf;</u>

- «Толщиномер ультразвуковой UT-4DL. Руководство по эксплуатации» АИКА.412231.001РЭ <u>http://www.ultratech.su/assets/ut_4dl-pэ-ru-01.2017.pdf.</u>

6.3 При проведении исследований были использованы базовая и дополнительная настройки ЭАТ толщиномера с целью оптимизации влияния структурных помех и шумов, вносимых зернистостью чугуна. Значение настраиваемых параметров приведены в таблице 4.

Настройки ЭАТ	Амплитуда импульса	Усиление ПТ	Порог	Бланкиро вание	Условия применения
Базовая (универсальная)	60	33	10	0	Среднее проникновение до 100 мм (литье, серый чугун, бронза) при малом уровне помех и шумов на малых толщинах. При затухании менее 20 дБ/м
Дополнительная	90	35	10	7,0-10,0	Высокое проникновение до 300 мм (литье, серый чугун, бронза) при отстройке бланкированием от помех и шумов на малых толщинах. При затухании от 20 до 30 дБ/м

Таблица 4 – Настройки ЭАТ при использовании преобразователя модели 2,5Б12/2

6.4 После выполнения РО-теста и высокоточной калибровки (1Point) на тонком образце толщиной 5,00 мм из стали 40Х13, задержка в призмах ультразвукового преобразователя П112-2,5-12/2-Б модели 2,5Б12/2 составила **3075 нс.**

6.5 При проведении исследований были использованы следующие режимы измерений: Интервал Т, Скорость V, Толщина НМ. В процессе измерений в режиме Скорость V ввод толщин образцов комплекта СОУЗ производился в процессе измерения.

7 Проведение испытаний, выполнение измерений.

7.1 Испытания проводились при нормальных условиях.

7.2 Типичный вид эхосигналов в образцах показан на рисунках 7-12.

Рисунок 7 Вид эхосигнала в образце № 02-18 СЧ15 Н10

Рисунок 8 Вид эхосигнала в образце № 02-18 СЧ15 Н40

Рисунок 9 Вид эхосигнала в образце № 02-18 СЧ15 Н80

Рисунок 11 Значительные помехи в виде «травы» до 9,5 мкс. Настройка ЭАТ ошибочная

Рисунок 10 Вид эхосигнала в образце № 02-18 СЧ15 Н100

Рисунок 12 Минимизированный уровень помех до 9,5 мкс. Правильная настройка ЭАТ

4690м/с

выход

ИНТЕРВАЛ Т 18:124 📼 ИНТЕРВАЛ Т 18:114 📼

7.3 Вид экранов толщиномера в процессе выполнения измерений показан на рисунках 13-18.

FΝ

СЧ15… ПЭП:Р

CTAPT

Рисунок 14 Вид экрана при измерении времени прохождения в образце № 02-18 СЧ15 Н80

Рисунок 16 Вид экрана при измерении скорости УЗК в образце № 02-18 СЧ15 Н80

Рисунок 15 Вид экрана при измерении скорости УЗК в образце № 02-18 СЧ15 Н20

Рисунок 17 Вид экрана при измерении толщины образца № 02-18 СЧ15 Н20

8 Результаты исследований.

Рисунок 18 Вид экрана при измерении толщины образца № 02-18 СЧ15 Н80

8.1 Измерения мерительным инструментом геометрических размеров образцов комплекта СОУЗ в направлении прозвучивания. Результаты измерений представлены в таблице 5.

Наименование СОУЗ	Геометрический размер в направлении прозвучивания, Н _{i0} , мм	Абсолютная погрешность (при Р=0,95), мм
№ 02-18 CH15 H10	10,00	0,02
№ 02-18 СЧ15 Н20	20,01	0,02
№ 02-18 СЧ15 Н40	40,01	0.02
№ 02-18 СЧ15 Н60	60,01	0,05
№ 02-18 СЧ15 Н80	80,01	0,05
№ 02-18 СЧ15 Н100	100,01	0,05
№ 02-18 СЧ15 Н150	150,01	0,05

Таблица 5 – Геометрические размеры образцов комплекта СОУЗ в направлении прозвучивания

8.2 Измерения в режиме **Интервал Т** времени прохождения УЗК в образцах комплекта СОУЗ в направлении прозвучивания. Результаты измерений представлены в таблице 6.

Таблица 6 - Время прохождения УЗК в образцах комплекта СОУЗ в направлении прозвучивания

Наименование СОУЗ	Время прохождения УЗК в направлении прозвучивания, Т _i , мкс	Абсолютная погрешность (при Р=0,95), мкс
№ 02-18 CЧ15 H10	2,120	0,006
№ 02-18 CЧ15 H20	4,244	0,006
№ 02-18 CЧ15 H40	8,541	0,006
№ 02-18 CЧ15 H60	12,710	0,006
№ 02-18 CЧ15 H80	16,950	0,006
№ 02-18 СЧ15 Н100	21,390	0,006
№ 02-18 СЧ15 Н150	32,080	0,006

8.3 Измерения в режиме Скорость V скорости продольных УЗК в образцах комплекта СОУЗ в направлении прозвучивания. Результаты измерений представлены в таблице 7.

Наименование СОУЗ	Скорость продольных УЗК в направлении прозвучивания, С _i , м/с	Абсолютная погрешность (при Р=0,95), м/с
№ 02-18 CЧ15 H10	4699	12
№ 02-18 CЧ15 H20	4695	10
№ 02-18 CЧ15 H40	4701	9
№ 02-18 CЧ15 H60	4696	7
№ 02-18 СЧ15 Н80	4690	7
№ 02-18 СЧ15 Н100	4682	9
№ 02-18 СЧ15 Н150	4675	12

Таблица 7 - Скорость продольных УЗК в образцах комплекта СОУЗ в направлении прозвучивания.

Примечание. Значительный разброс измеренных значений скорости продольных УЗК объясняется неоднородностью структуры, крупным зерном и различной толщиной образцов (см. выше).

8.3.1 Среднее значение скорости продольных УЗК в образцах комплекта СОУЗ в направлении прозвучивания: Сср = **4691 м/с**. Это значение близко к характерным значениям скорости УЗК в СЧ с такими: формой графитовых включений, степенью эвтектичности, зерном и др. [5, с.600].

8.4 Определение эквивалентной ультразвуковой толщины образцов комплекта СОУЗ.

8.4.1 Эквивалентная ультразвуковая толщина каждого образца определяется по формуле

$$H_i$$
 экв = Ccp * T_i соуз,

где Сср – среднее значение скорости ультразвуковых волн по комплекту образцов м/с; Т_i соуз – время прохождения волн в данном образце, с.

8.4.2 Абсолютная погрешность эквивалентной толщины вычисляется по формуле

$$\Delta H_i$$
 экв = Ccp * ΔT_i соуз,

где ∆T_i соуз – абсолютная погрешность времени прохождения ультразвуковых волн в образце. Эквивалентная ультразвуковая толщина образцов комплекта СОУЗ приведена в таблице 8.

Таблица 8 - Эквивалентная ультразвуковая толщина образцов комплекта СОУЗ.

Наименование СОУЗ	Эквивалентная ультразвуковая толщина Н _{і экв} , мм	Абсолютная погрешность (при Р=0,95), мм	
№ 02-18 CЧ15 H10	9,945	0,028	
№ 02-18 CЧ15 H20	19,913	0,028	
№ 02-18 CЧ15 H40	40,162	0.028	
№ 02-18 CЧ15 H60	59,623	0,028	
№ 02-18 CЧ15 H80	79,502	0,028	
№ 02-18 СЧ15 Н100	100,340	0,028	
№ 02-18 СЧ15 Н150	150,480	0,028	

Примечание. Значительные отклонения значений эквивалентной толщины от геометрических значений толщины образцов (см. таблицу 5) также объясняется неоднородностью структуры, крупным зерном и различной толщиной образцов.

8.5 Измерения в режиме **Толщина НМ** толщин образцов комплекта СОУЗ в направлении прозвучивания. Результаты измерений представлены в таблице 9.

Наименование СОУЗ	Средняя измеренная толщина в направлении прозвучивания, H _i , мм	Основная абсолютная погрешность $\Delta_{H} = H_i - H_{i \ экв},$ мм	Основная абсолютная погрешность $\Delta_{H1} = H_i - H_{i0},$ мм	Предел допускаемой основной погрешности Δ _{НД,} мм
№ 02-18 CЧ15 H10	9,97	0,02	- 0,03	$\pm 0,08$
№ 02-18 СЧ15 Н20	19,95	0,04	- 0,06	± 0,11
№ 02-18 CЧ15 H40	40,09	- 0.07	0.08	± 0,17
№ 02-18 CЧ15 H60	59,49	- 0,13	- 0,52	± 0,23
№ 02-18 CH15 H80	79,39	- 0,11	- 0,62	± 0,29
№ 02-18 СЧ15 Н100	100,4	0,06	0,39	± 0,40
№ 02-18 СЧ15 Н150	150,4	- 0,08	0,39	± 0,55

Таблица 9 – Измеренные толщины образцов комплекта СОУЗ в направлении прозвучивания

Примечание. Основная абсолютная погрешность $\Delta_{\rm H}$ ультразвукового толщиномера UT-4DL при измерении значений толщины образцов COV3, определенная по отношению к значениям эквивалентной толщины (см. таблицу 8), не превышает предела допускаемой основной абсолютной погрешности измерения толщины для данного толщиномера

 $\Delta_{\text{HZ}/0.01/} = \pm (0.05 \pm 0.003 \cdot \text{H}_{\text{X}}), \Delta_{\text{HZ}/0.1/} = \pm (0.1 \pm 0.003 \cdot \text{H}_{\text{X}}).$

С практической точки зрения интересным при измерениях на реальных ОК может быть то, что основная абсолютная погрешность $\Delta_{\rm H1}$, определенная по отношению к действительным значениям геометрических размеров образцов (см. таблицу 5), также в основном не превышает предела допускаемой основной абсолютной погрешности измерения толщины, хотя «разброс» значительнее.

Рекомендации

Проведенные исследования позволили разработать перечень рекомендаций, для того чтобы избежать значительного влияния различных факторов на точность измерения скорости УЗК.

В качестве рекомендаций на практике можно предложить

- проводить настройку приборов на СО из чугуна с известной композицией;

- для каждого конкретного случая измерений составлять карту скорости УЗК в зависимости от композиции сплава, его однородности, процентного соотношения форм графита и др.;

- использовать искатели с длиной волны, превышающей размер зерен в отливке, например, по результатам исследований, приведенных в [5, с.599], рекомендованы искатели, работающие на частотах: 0,5 МГц; 1,25 МГц; 2,5 МГц, как предельный вариант с рабочей частотой 4,0 МГц;

- значения скорости УЗК всегда проверять на СО из материала ОК;

 измерять скорость УЗК в двух местах, доступных для механического измерения толщины и наиболее сильно различающихся по толщине, а в других участках применять линейную интерполяцию [5, с.602].

Выводы

1 На специально изготовленных образцах комплекта СОУЗ (толщины от 10 мм до 150 мм) из чугуна СЧ15 ГОСТ 1412-85 была продемонстрирована способность ультразвукового толщиномера UT-4DL быстро и точно измерять скорость продольных УЗК, время прохождения УЗК, толщину эхо-импульсным методом при одностороннем доступе к ОК.

2 Проведенные испытания позволили

- точно определить типы наиболее эффективных РС ПЭП для измерений на таком материале, как чугун и подобрать конкретную модель - 2,5Б12/2;

- уточнить настройки ЭАТ толщиномера для РС ПЭП 2,5Б12/2 при измерениях эхоимпульсным методом на образцах комплекта СОУЗ;

- разработать методику контроля физико-механических свойств СЧ, основывающуюся на наличии у предприятия образцов из комплекта СОУЗ;

- подтвердить метрологические характеристики толщиномера при измерениях на СЧ;

- оценить влияние структуры СЧ на точность измерений скорости УЗК, а также разработать комплекс рекомендаций по уменьшению этого влияния.

3 Результаты испытаний практически подтвердили, что ультразвуковой толщиномер UT-4DL с успехом может применяться при определении физико-механических свойств любых видов чугуна для их идентификации из-за нестандартной формы графита и разбраковки посредством измерения скорости продольных УЗК.

Литература

1 Металловедение и термическая обработка стали: Справ. изд. В 3-х т./Под ред. Бернштейна М. Л., Рохштадта А. Г.- 4-е изд., перераб. и доп. Т.1. Методы испытаний и исследования. В 2-х кн. Кн.1. – М.: Металлургия, 1991, 304 с.

2 Металлография. Учебник для вузов. Лившиц Б. Г.– М.: Металлургия, 1990. 236 с.

3 Методы акустического контроля металлов / Н. П. Алешин, В. Е. Белый, А. Х. Вопилкин и др.: Под ред. Н. П. Алешина. – М.: Машиностроение, 1989. – 456 с., ил.

4 Неразрушающий контроль. В 5 кн. Кн. 2. Акустические методы контроля: Практ. Пособие / И. Н. Ермолов, Н. П. Алешин, А. И. Потапов; Под ред. В. В. Сухорукова. – М.: Высш. шк., 1991. 283 с.: ил.

5 Ультразвуковой контроль материалов: Справ. изд. Й. Крауткремер, Г. Крауткремер; Пер. с нем. – М.: Металлургия, 1991. 752 с.